甲状腺结节

首页 » 常识 » 预防 » 关于AI医学影像,这三条干货你必须要了解
TUhjnbcbe - 2022/12/7 14:23:00

随着技术飞速发展、医学数据的持续扩增以及硬件设备的不断提升,人工智能和医疗的结合方式越来越多样化。目前AI在医疗领域中的落地的应用场景主要有医学影像、智能诊疗、智能导诊、病例分析、医院管理、新药研发和医疗机器人等,而其中AI医学影像中的应用最为广泛。

一、AI医学影像的简介

AI医学影像,顾名思义,是指充分利用AI在感觉认知和深度学习的技术优势。将其应用在医学影像领域,从而达到提高诊断效率和准确率的目的。

当下,AI医疗影像流程主要包括底层数据处理、影像筛查、智能决策三阶段,即通过精准的疾病预测模型,进行各种因子及数据的分析处理,应用AI医疗影像,对病原细胞分类,提高筛查效率和质量,以此来协助医生在就诊时提供最好的诊断和治疗建议。

AI医学影像的诊断环节,具体体现以下两个方面:

①利用AI的感觉认知能力对患者的影像进行识别,获取重要信息,可为经验不足的医生提供帮助,提高其判读医学影像的效率;

②基于深度学习通过大量已有的影像数据和临床诊断信息训练人工智能系统,使其具备诊断疾病的能力,辅助临床诊断,降低漏诊误诊的概率。

二、AI医学影像助力疾病诊断

1.影像设备的图像重建

AI可以通过算法的图像映射技术,将采集的少量信号恢复出与全采样图像同样质量的图像,而且使用图像重建技术,可以由低剂量的CT和PET图像重建得到高剂量质量图像。这样在满足临床诊断需求的同时,还能够降低辐射的风险。

2.智能辅助诊断肺部疾病

国内应用AI+CT影像最为成熟的领域在肺结节的识别上。AI能够有效识别易漏诊结节比如6mm以下实性结节和磨玻璃结节,且准确率在90%左右,同时能提供结节位置、大小、密度和性质等。除此之外,能对肺结核、气胸、肺癌等肺部疾病进行筛查。

3.智能辅助诊断脑部疾病

目前脑部疾病的智能诊断包括脑出血、内动脉粥样硬化诊断、颅内动脉瘤诊断和颈动脉易损斑块评估等。AI+头部CT,基于机器视觉与深度学习技术,能以秒级速度完成专业要求高、耗费时间长的影像评估,协助医生准确判断,让患者第一时间获得最优治疗方案。

4.智能辅助诊断神经系统疾病

AI在神经系统疾病里的应用主要包括癫痫、阿尔兹海默症、帕金森病。AI可以将患者的影像数据进行处理分析,并与正常人群组做统计比对,从而计算得到代谢异常的病灶大小、位置等信息,通过认知技术,给出治疗方案的建议以及治疗效果的预测。

5.智能辅助诊断心血管疾病

AI可以在胸部CT数据基础上,利用深度学习技术和图像处理技术,设计特定算法后评估冠状动脉易损斑块,进行冠心病智能辅助诊断,规划支架手术置入方案等。同时还可以智能诊断主动脉疾病类型、主动脉瘤等复杂疾病。

6.智能辅助诊断眼底疾病

目前应用最为广泛的是筛查糖网病。糖网病是常见的视网膜血管病变,也是糖尿病患者的制药致盲眼病,早期往往没有任何临床症状,一旦有症状已错过最佳治疗时机。将AI医学影像应用到眼底读片中,进行初步筛查,可大大改善目前糖尿病视网膜病变筛查效率。

7.智能勾画靶区

通过应用AI技术可大幅提升效率,AI智能勾画靶区的高准确率能够很大程度避免由于靶区勾画的不准确导致的无效治疗。目前,AI+靶区勾画已经成功运用在肺癌、乳腺癌、鼻咽癌、肝癌、前列腺癌、食管癌和皮肤癌上。

8.智能判断病理切片

将人工智能引入病理病理切片的研究,通过学习病理切片细胞层面的特征,不断完善病理诊断的知识体系是解决读片效率以及诊断准确值的最好的办法。

9.其他智能辅助诊断方案

人工智能在医学影像中的应用还包括脏器的三维成像、超声辅助甲状腺结节、骨龄分析、骨折智能诊断等。

三、AI医学影像面临的挑战

目前AI医学影像基本是基于单病种图像标注形成的模型,尚没有符合临床使用场景的产品,产品集中于少数几个病种,难以覆盖全部医学影像问题。最普遍的问题还是产品实用性低,即AI阅片准确率不高。在临床过程中,很多AI医学影像准确率只能达到50%。视觉识别的不准确,产品性能自报与实际检测数据不符,因此不能广泛的应用到实际医疗工作中。

小结

现阶段,AI医学影像现已成为人工智能在医疗领域炙手可热的方向,相信在不远的将来,随着AI医学影像技术的发展和模式的创新,将在赋能医疗的路上越走越远,为精确诊断、精准治疗的实现添砖加瓦。

1
查看完整版本: 关于AI医学影像,这三条干货你必须要了解